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Abstract Applying density functional theory (DFT)-based
molecular dynamics simulation methods we investigate the
effect of explicit treatment of electronic structure on the sol-
vation free energy of aqueous Ru2+ and Ru3+. Our approach
is based on the Marcus theory of redox half reactions, focus-
sing on the vertical energy gap for reduction or oxidation of
a single aqua ion. We compare the fluctuations of the quan-
tum and classical energy gap along the same equilibrium ab
initio molecular dynamics trajectory for each oxidation state.
The classical gap is evaluated using a standard point charge
model for the charge distribution of the solvent molecules
(water). The quantum gap is computed from the full DFT
electronic ground state energies of reduced and oxidized spe-
cies, thereby accounting for the delocalization of the electron
in the donor orbital and reorganization of the electron cloud
after electron transfer (ET). The fluctuations of the quantum
ET energy are well approximated by gaussian statistics giving
rise to parabolic free energy profiles. The curvature is found
to be independent of the oxidation state in agreement with
the linear response assumption underlying Marcus theory. By
contrast, the diabatic free energy curves evaluated using the
classical gap as order parameter, while also quadratic, are
asymmetric reflecting the difference in oxidation state. The
response of these two order parameters is further analysed by
a comparison of the spectral density of the fluctuations and
the corresponding reorganization free energies.

Keywords Redox reactions · Marcus theory · Energy gaps ·
Ab initio molecular dynamics simulation · Ru aqua cations

1 Introduction

A crucial element in the Marcus theory of electron transfer
(ET) [1–4] is the simple and effective treatment of the polar
solvent. Solvation is accounted for by two intersecting par-
abolic free energy curves, one for the reactant, and one for
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the product state. The reaction coordinate controlling the free
energy is the polarization of the solvent induced by the charge
carried by the donor and acceptor solute. In the original for-
mulation of the theory [1] the polarization was described
by the linear response of a dielectric continuum. The linear
response assumption not only justifies the quadratic depen-
dence on the reaction coordinate but also implies that the
curvatures of the parabola could be taken to be identical.
The entire solvent effect could thus be summarized in a sin-
gle parameter, the reorganization free energy (traditionally
denoted by λ) appearing in the famous gap law for the acti-
vation free energy. Marcus also derived a compact expression
forλusing a dielectric cavity model allowing for more quanti-
tative predictions (For recent reviews see Refs. [5,6]; Ref. [4]
is a more personal review with a historical perspective).

The success and simplicity of Marcus theory posed both
a challenge and opportunity for computer simulation. The
semiclassical approach of Marcus theory, separating the elec-
tronic structure of the donor (D) and acceptor (A) from the
classical motion of the solvent, meant that a number of pre-
dictions and assumptions could be tested using classical force
field-based molecular dynamics methods. This rather inge-
nious direction in computational chemistry was pioneered by
Warshel and coworkers [7–9] and subsequently extended by
numerous other groups [10–27]. A first important question
that was investigated was the validity of the parabolic approx-
imation of the free energy surface. This required a precise
microscopic definition of the polarization order parameter,
for which Warshel took the vertical energy gap [8]. This
definition, already anticipated in an early paper of Marcus
[2], is a most natural choice for a reaction coordinate for
nonadiabatic ET. It follows from the golden rule in the limit
of a classical treatment of the ionic motion and is a direct
consequence of the Franck–Condon approximation. Simu-
lations of model aqueous self-exchange reactions verified
that the diabatic free energy surfaces are indeed quadratic
to a very good accuracy. As an example we mention the
popular aqueous Fe3+/Fe2+ system, which has been investi-
gated repeatedly using various force field models. Deviations
from linear response were found to be small (<10%) both for
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the homogeneous self-exchange reaction Fe*3+ + Fe2+ →
Fe*2+ + Fe3+ [10,9,14,24]as for the heterogeneous Fe3+ +
e− → Fe2+ redox reaction in the proximity of an electrode
surface [12,13,16,18].

The reactant and product free energy surfaces are as-
sumed to have the same curvature in Marcus theory. This
property is necessarily satisfied for self-exchange reactions
even if the polarization of the solvent is not strictly linear.
Charge separation (D + A → D+ + A−) and the reverse
charge recombination reaction (D+ + A− → D + A) are in
this respect a more critical test. Indeed charge recombination
reactions can show in the inverted region a dependence on
the free energy gap differing significantly from the approx-
imately parabolic dependence in the normal region. While
some of these nonlinearities can be explained by quantum
motion of intramolecular modes of the solute (molecule or
complex, see e.g. Ref. [5]), Kakitani and Mataga [28,29] sug-
gested that also dielectric saturation could play a role. Carter
and Hynes [11] tested this possibility in a classical simulation
study of a charge separation/recombination reaction (ignor-
ing all quantum effects) and in fact obtained a significantly
different second moment for the vertical gap fluctuations of
the (equilibrium) neutral and ion pair. Converting these gap
fluctuations to reorganization free energies using the rela-
tion between these quantities in the linear regime led to an
asymmetric gap law in disagreement with Marcus theory and
seemingly supporting the Kakitani and Mataga hypothesis.

The apparent conflict with Marcus theory was resolved by
Tachiya [30] who showed, using rigorous statistical mechan-
ical arguments, that a difference in second derivative of reac-
tant and product state is incompatible with a parabolic shape
of the energy curves and must be the result of nonlinear
behaviour. This was confirmed by King and Warshel [9]
who using thermodynamic perturbation methods extended
the range of nonequilibrium gap values for the same model
used in Ref. [11]. In this way they were able to show that
higher-order terms are vital in fitting the free energy curves.
Moreover, the extended free energy curves were found to be
considerably more similar than suggested by the extrapola-
tion based on the second-order derivative at the equilibrium
gap value, leading in turn to far less pronounced asymmetries
in the gap law.

The discussion about nonlinearity and corresponding
asymmetries in the gap law has been recently revived by Mat-
yushov and Voth who identified a further source of nonlinear
response, namely a possible dependence of the solute polar-
izability on the oxidation state [31]. This property is missing
in Marcus’ formulation of ET and most classical force field
models. Matyushov and Voth investigated the implications
of this effect in an analytic study of a two-state–one mode
vibronic model with an electronic state-dependent curvature
of the two diabatic harmonic potential energy surfaces. The
significant distortion of the Marcus gap law that could be
achieved by this model was subsequently verified by simu-
lation of a classical polarizable solute [21].

Heterogeneous ET is an example of electron exchange
between two profoundly inequivalent reactants: the redox

active solute undergoes a drastic change when oxidized or
reduced while the metal electrode is hardly affected at all.
Similar to charge recombination, electrode processes could
therefore provide information about the effect of solute polar-
ization. In fact, as pointed out by Marcus [3], the variation of
the logarithm of the current with overpotential (after the elec-
trochemist have applied their corrections for transport) is a
good probe of possible gap relations. This is nicely illustrated
by the derivation of the Butler–Volmer equation as presented
in textbooks on electrochemistry (see for example Ref. [32]).
The effect of an electrode is, in first instance, reduced to a
variable shift of the potential (and free) energy surface of the
oxidized state of the solute with respect to the reduced state.
Any asymmetry in the gap law is in this picture entirely the
result of a difference in curvature (or rather shape) of the
free energy surface of the oxidation states of the solute in
homogeneous solution (no physical electrodes present).

This picture is also the philosophy behind the ab initio
molecular dynamics (“Car–Parrinello”) simulation method
we have developed for the study of electrochemical half
reactions. The method was applied in the study of a num-
ber of redox half reactions involving transition metal aqua
ions (Cu+/Cu2+ in Ref. [33], Ag+/Ag2+ in Refs. [33,34],
Ru2+/Ru3+ in Ref. [35], MnO−

4 /MnO2−
4 and RuO−

4 /RuO2−
4

in Ref. [36]). Changes in electronic structure upon oxida-
tion are appreciable in these compounds. The fairly accurate
agreement with experiment for the redox potentials of full
redox reactions [33,36] gives some confidence that density
functional theory (DFT) can be relied on to describe these
effects suggesting that our approach could be used to subject
the Matyushov–Voth conjecture to a numerical test. In par-
ticular the ruthenium hydrate half reaction [35] is of interest:

Ru3+ + e− −→ Ru2+. (1)
These ions have the same electronic d shell configuration
and core charge as Fe3+ and Fe2+, but unlike iron ions are
low spin avoiding certain technical complications in the den-
sity functional treatment used in the ab initio MD method. In
Ref. [35] we computed the diabatic free energy profiles for
the single aqua ions Ru3+ and Ru2+ using constrained and
unconstrained Car–Parrinello MD. We used the same order
parameter as in previous force field-based calculations [9,10,
12–14,24] namely the classical solvent electrostatic potential
at the site of the ion evaluated by assigning fixed point charges
to solvent atoms. It was found that both diabatic curves are
well approximated by parabolae but the curvature of Ru3+
was almost twice as large as for Ru2+. An asymmetry of this
size seems to contradict the classical model simulation result
reported by Rose and Benjamin [12] who found only minor
deviations for the redox couple Fe3+ and Fe2+.

The results of the calculation of Ref. [35] could there-
fore be interpreted as support for the Matyushov–Voth effect.
However, while the electrostatic potential experienced by an
ion in a simple point charge model can be equated to the ver-
tical energy gap, this is not allowed in an explicit electronic
structure calculation. An interesting question therefore, and
focus of this work, is how the shape of the free energy profiles
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changes if the true electronic vertical energy gap is used as a
reaction coordinate rather than the classical solvent electro-
static potential. The quantum ET energy takes into account
the delocalization of the electron in the donor orbital and
electronic relaxation after ET, effects which are missing in
the classical coordinate. This was also at the heart of the
argument of Matyushov and Voth, which would suggest that
differences in curvature of free energy profiles can only be
enhanced in a consistent quantum treatment of the polariza-
tion. Here we address this issue by comparing the probabil-
ity distributions of quantum and classical ET energy for the
diabatic states involved. Anticipating our results, we find that
the quantum gap fluctuations are again gaussian, but contrary
to the classical electrostatic order parameter, give parabolic
free energy curves with virtually identical curvature in the
two oxidation states, thus closely adhering to Marcus theory,
begging the question how the solvent compensates for the
difference in oxidation state of the ions. To gain some micro-
scopic insight in the ET mechanism we have performed a
structural and dynamical analysis relating fluctuations of ET
energy to fluctuations of structure. The idea is to identify the
relevant motions of the solvated coordination complex that
drive the ET reaction and compare how they are reflected in
the classical and quantum order parameter fluctuations. This
analysis also enables us to compare our ab initio molecular
dynamics results for aqueous Ru2+/Ru3+ to structural and
dynamical data from experiment and simulation studies of
other metal cation hexahydrates, in particular Al3+, [37–39]
Fe3+, [40], and Cr3+, [41].

This paper is organized as follows. In Sect. 2 we review
the predictions of Marcus theory and then define the quan-
tities related to MD simulation: quantum and classical ET
energy, the corresponding probability distributions and spec-
tral density functions. It is shown how the free energy profile
for homogeneous ET between two infinitely separated ions
can be calculated from the profiles for heterogeneous ET.
In Sect. 3 we present radial distribution functions of aque-
ous Ru3+ and Ru2+ obtained from Car–Parrinello MD. Free
energy profiles for heterogeneous and homogeneous ET are
discussed and compared to the predictions of Marcus the-
ory. Solvent effects are investigated by comparing the results
obtained for aqueous solutions with the data obtained for the
gas phase. Spectra of the time correlation function (TCF)
of the ET energy fluctuations are presented and discussed.
Section 4 is a discussion and conclusion.

2 Theory and method

2.1 Reorganization free energies and order parameter
fluctuations

Electron transfer is an example of a chemical reaction which
can be treated in the diabatic representation as defined by
a full set of diabatic potential energy surfaces, one for the
reactant (denoted by A) and one for the product (denoted by
B). Such a two-surface picture allows for the introduction

of reorganization free energy, which, as the success of the
Marcus theory shows, is a particularly powerful concept for
the understanding of a chemical process. We will follow the
statistical mechanical formulation of Warshel, first presented
in Ref. [7] and applied and reviewed in many subsequent
publications (see for example Ref. [9]). The key equations
required for the analysis of our results are summarized below.

Reorganization free energy quantifies the decrease in free
energy following a vertical ET. Similar to activation free en-
ergy it depends on the specification of a suitable reaction
coordinate ξ describing the nonequilibrium states along the
reaction path. In a statistical mechanical treatment ξ must be
formally defined in terms of a function ξ

(
RN

)
of the micro-

scopic configuration RN (i.e. the coordinates of all N atoms
of the system). ξ can be the solvent polarization as in the
original Marcus theory, or a geometric quantity or the verti-
cal energy gap �E itself:

�E(RN ) = EB(RN ) − EA(RN ), (2)

where EM
(
RN

)
, M = A,B are the diabatic potential en-

ergy surfaces. Once the reaction coordinate is decided we
can obtain the microscopic expression for the corresponding
diabatic (Landau) free energy functions AM , M = A,B in
the form of a constrained partition function.

AM (ξ ′) = −kBT ln �−3N

∫
dRN exp[−βEM

(
RN

)
]δ

(
ξ

(
RN

)
− ξ ′) , (3)

where � is the average thermal wavelength, T = 1/(kBβ)
the temperature, kB the Boltzmann constant, δ the Dirac delta
function. The connection to order parameter fluctuations is
made by introducing the probability distribution:

pM (ξ ′) =

∫
dRN exp[−βEM

(
RN

)
]δ(ξ(RN ) − ξ ′)

∫
dRN exp[−βEM

(
RN

)
]

. (4)

The free energy function of Eq. (3) can then be separated
in the logarithm of pM (ξ ′) which can be sampled from a
simulation:

AM (ξ ′) = −kBT ln pM (ξ ′) + AM , (5)

and the (diabatic) free energy

AM = −kBT ln �−3N
∫

dRN exp[−βEM

(
RN

)
]. (6)

which can be determined (relative to a reference state) by
thermodynamic perturbation methods.

These completely general relations, valid for any set of
diabatic energy surfaces, lead to a formal definition of a reor-
ganization free energy λA for the reactant and λB for the
product state

λA = AA(ξB) − AA(ξA) (7)

λB = AB(ξA) − AB(ξB), (8)

where ξM is the expectation value of the reaction coordinate
in state M = A,B

ξM =
〈
ξ

(
RN

)〉

M
=

∫
dξ ′ ξ ′ pM

(
ξ ′) . (9)
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The subscripted angular brackets indicate a canonical aver-
age over potential energy surfaces EM

(
RN

)
.

The region in the configuration space occupied by the
reactant state generally represents a highly unstable nonequi-
librium state of the product. The evaluation of reorganiza-
tion free energy requires, therefore, extensive application of
special sampling methods such as the weighted histogram
scheme (see Ref. [9]). However, in the linear regime, assumed
by Marcus theory, the reorganization free energies can be
directly obtained from the variance of equilibrium fluctua-
tions of the order parameter by means of a quadratic extrap-
olation of the free energy profiles [Eq. (5)]. Using a notation
similar to Eq. (9) the variance (second moment) of the order
parameter can be written as

σ 2
M =

〈(
δξ

(
RN

))2
〉

M
=

∫
dξ ′ (

ξ ′ − ξM
)2

pM
(
ξ ′) ,(10)

and the corresponding linear response reorganization free
energy is given by

λ′
M = kBT

2σ 2
M

(
ξA − ξB

)2
. (11)

A rather special situation arises however when the vertical
energy gap �E of Eq. (2) is used as the reaction coordinate,
ξ = �E . Inserting Eq. (2) in Eq. (3) it can be shown [7,30,
42] that the corresponding free energy profiles are related by

AB(�E) − AA(�E) = �E . (12)

It is therefore sufficient to compute the free energy curve of
one diabatic state, say A. The corresponding curve for state
B is then found by adding the energy gap to the curve com-
puted for A [30]. For parabolic free energy curves this leads
to a drastic simplification: in order for Eq. (12) to be fulfilled
the curvatures, reorganization free energies and widths of the
gaussian distributions of states A and B must be equal:

λA = λB =: λ (13)

σA = σB (14)

ξA = λ + �A (15)

ξB = −λ + �A, (16)

where �A= AB− AA is the reaction free energy change (for
a derivation of Eqs. (13),(14),(15) and (16) see for example
Ref. [36]). Curvature, horizontal and vertical relative position
of the minima of the two free energy curves are therefore
entirely determined by only two parameters, the reorganiza-
tion free energy λ and the thermodynamic driving force �A.
Then assuming with Marcus that the ET takes place at the
crossing point of the two quadratic diabatic curves (Franck–
Condon principle) we obtain the Marcus gap law

�A‡ = (λ + �A)2

4λ
, (17)

relating the free energy barrier �A‡ to the ET driving force
�A. Eqs. (13),(14),(15) and (16) have also consequences for

the reorganization free energies defined via the gap fluctua-
tions according to Eq. (11)

λ′
A = β

2
〈δ�E〉2

A (18)

λ′
B = β

2
〈δ�E〉2

B, (19)

where 〈δ�E〉M = 〈�E − �EM 〉M . Because the variance
of the fluctuations is independent of the oxidation state [Eq.
(14)] the reorganization free energies of Eqs. (11), (18) and
(19) are again equal and identical to λ

λ′
A = λ′

B = λ. (20)

Equation (20) seems to be a surprising result because λ,
respectively, λM [Eqs. (7), (8)] and λ′

M [Eqs. (18), (19)] are
in principle quite different quantities (which is why we have
distinguished them by an accent). The latter is determined by
the motion on a single diabatic PES while the former seem-
ingly refers to two energy surfaces. We want to emphasize
here that Eqs. (20),(13),(14),(15),(16),(17), (18) and (19) are
entirely a consequence of using the ET energy as the reaction
coordinate in combination with the assumption of gaussian
statistics for this coordinate. These relations do not hold if
the ET is described by a reaction coordinate other than the ET
energy (e.g. bond length or a path in a two-dimensional space
spanned by ET energy and a geometrical coordinate). Only in
the very special case of ET energy the order parameter distri-
bution of one diabatic state determines the distribution of the
other diabatic state, and therefore both distributions can be
described by a single parameter which is the reorganization
free energy λ.

2.2 Heterogeneous electron transfer to a virtual electrode

Two types of ET reactions A −→ B are distinguished: homo-
geneous ET reactions between a donor and an acceptor both
solvated in the same medium and heterogeneous ET reactions
between a solvated ion and an electrode E. In the first case
A denotes the donor–acceptor complex D–A before the ET
and B the complex D+–A− after the transfer. In the second
case A stands for a system consisting of a single solvated ion
in the reduced state R in contact with an electrode E (A =
R+E) and B the ion in the oxidized state O and the excess
electron located on E (B = O+E−). An advantage of studying
heterogeneous over homogeneous ET reactions is that the
thermodynamic driving force can be controlled by variation
of the electrode potential. This is particularly straightforward
in the most elementary model of an electrode process (see for
example Ref. [32]) in which the electrode is replaced by an
electron reservoir containing electrons at an electronic chem-
ical potential µ which, however, has no physical interactions
with the ionic solution. The computational method we used
in Refs. [33],[35] can be viewed as an MD implementation
of this virtual electrode model in a finite periodic cell. As we
argue in Ref. [35], theµ in our model can still be interpreted as
an electrode potential ε (in atomic units) even though the ref-
erence electrode is completely artificial (see also Ref. [43]).
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The net effect of this fictitious noninteracting electrode is a
shift of the PES of O by µ adding to the vertical energy gap
�E of Eq. (2):

�Eµ := EB − EA = �E0 + µ. (21)

�E0 is the ET energy at zero electronic chemical potential
which we refer to as ionization energy (electron affinity) if
state R (O) generates the ion dynamics,

�E0(RN ) = EO(RN ) − ER(RN ). (22)

EO and ER are the ground state PESs of O and R, respec-
tively. The free energies AM of Eq. (6) are affected in exactly
the same way leading to a reaction free energy offset by µ.

�Aµ := AB − AA = �A + µ. (23)

�Aµ is the driving force of ET and �A the “unbiased” oxi-
dation free energy difference �A = AO − AR at µ=0.

�A can “in principle” be computed from molecular dynam-
ics simulation using the free energy perturbation formula [42]
applied to state R and O,

�A = −1

2
kBT ln

〈exp(−β�E0)〉R

〈exp(β�E0)〉O
. (24)

In practice such exponential averages are rather difficult to
evaluate unless there is substantial overlap between the two
regions in configuration space accessible by equilibrium ther-
mal fluctuations. In our previous study [35] we have shown
that these conditions are actually met for the Ru2+ → Ru3+
+ e− half reaction. We compared diabatic free energy profiles
[Eq. (5)] computed using constrained and equilibrium ab ini-
tio MD simulation. The same order parameter was employed
as in classical simulations namely the solvent electrostatic
potential φ at the site of the metal ion as determined from a
point charge model,

φ
(

RN
)

=
∑

n

N∑

I=2

qI

|RI + nL − R1| (25)

In Eq. (25) qI denotes the charge of atom I at position RI ,
the Ru ion is labelled 1, H and O atoms from 2 to N , L is
the box length and

∑
n stands for lattice summation. In our

DFT simulation φ was treated merely as an order parame-
ter for reversible transformation between redox states. In a
classical point charge model, however, the solvent potential
φ of Eq. (25) is directly related to the vertical energy gap of
Eq. (2) as noted by Warshel in his pioneering work on mod-
elling of ET reactions [7]. For clarity, classical (point charge)
energy gaps will be indicated by �U while the notation �E
will be reserved for quantum gaps computed using electronic
structure methods.

For homogeneous reactions �U can be taken identical
to the difference in the value of φ at the site of the donor
and acceptor ion (in atomic units), ignoring further electronic
contributions. Of course for single ions the missing electronic
term, in first approximation equal to the vacuum ionization
energy, is not at all small and is in fact of similar magnitude
as the electrostatic potential φ (≈ the difference in hydration
energy of the two oxidation states) but of opposite sign. For

the purpose of comparison to a fully consistent DFT calcula-
tion of a half reaction it is therefore convenient to “calibrate”
�U by the ionization energy in vacuum, denoted by �Ev

0 ,
leading to the following expression for the classical vertical
gap,

�U (RN ) = eφ(RN ) + ξEW

2L
(q2

O − q2
R) + �Ev

0 (26)

where e is the elementary charge. We have also included the
self- interaction energy of the ion with its periodic images
and background charge in a finite periodic cell [44]. The
Ewald constant ξEW = −2.837297 and L is the box length.
qM is the classical point charge of the ion in state M . For
the Ru2+ →Ru3+ + e− reaction of interest here q2

O − q2
R =

9 − 4 = 5. Similar to Eq. (21) we can again bias the gap by
the electronic chemical potential µ,

�Uµ(RN ) = �U (RN ) + µ, (27)

so that �Uµ can be interpreted as the energy required to trans-
fer the electron from the site of the ion to the electrode within
a classical model for ionic solvation. Note that in Eqs. (27)
and (26) all terms except φ(RN ) are constants. Therefore the
free energy profiles along �Uµ, AM (�Uµ), are only shifted
horizontally wrt. the profiles along φ leaving fluctuations and
curvature unchanged.

Although the free energy profiles along φ (and therefore
along �Uµ) were found to be well approximated by parabo-
lae, the curvature for the oxidized state was almost twice as
large as for the reduced state and similarly for the reorganiza-
tion free energies we obtained λO ≈ 2λR. This observation is
not in conflict with the results of linear response theory (see
Sect. 2.1) according to which λO = λR := λ [Eq. (13)] if the
fluctuations of the ET energy are gaussian. The reason is that
�Uµ is not the ET energy in an ab initio MD simulation as
opposed to classical MD. The relevant energy is now the full
vertical quantum gap �Eµ of Eq. (21). The objective of this
work is to verify whether the fluctuations of �Eµ are gauss-
ian, or, equivalently, whether the linear response assumption
holds for the Ru2+/Ru3+ redox couple.

Total energies ER and EO are calculated at the level of
DFT for a single solvated ion in periodic boundary con-
ditions. Hence, the difference, �Eµ can be viewed as the
quantum equivalent of �Uµ. While �Uµ simply depends on
the classical potential at the single site of the ion, �Eµ is
a complicated configurational function taking into account
the delocalization of the electron in state R (HOMO) and
full electronic relaxation after ET in state O. Straightforward
sampling of the equilibrium distribution of �Eµ will give
rather poor statistics, in particular for the important cross-
ing region. Unfortunately, �Eµ cannot be easily controlled
in a constrained MD scheme like an ordinary configurational
order parameter such as �Uµ as it depends also on electronic
degrees of freedom. This was one reason why we have chosen
�Uµ (respectively φ) for our constrained MD approach and
not �Eµ. However, as pointed out by Tachiya [30], the free
energy curves can be sampled reasonably well by exploiting
Eq. (12) combining data points obtained from two equilib-
rium simulations of R and O to one diabatic curve.
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2.3 Homogeneous electron transfer at infinite separation

The self-exchange reaction:

Ru∗2+ + Ru3+ −→ Ru∗3+ + Ru2+ (28)

is a classical example of a homogeneous ET reaction. Rate
constants have been determined in aqueous [45] and non-
aqueous [46] solutions and calculated from crystallographic
[47] and spectroscopic [48] data using the equations of Mar-
cus. Computation of ET rates from first principle simulation
that can be directly compared to experimental results still rep-
resents a major challenge. One reason is that most ET reac-
tions are well in the nonadiabatic regime (see e.g. Refs. [5,
6]). Since the simulation methodology used here is based on
Born–Oppenheimer dynamics it cannot be applied without
further approximations (for example surface hopping meth-
ods). In addition, density functional-based MD simulation of
homogeneous ET is also held back by a more technical com-
plication, namely the self-interaction error of current density
functionals incorrectly favouring delocalized states with frac-
tional charge over mixed valence states.

Here we consider homogeneous ET only in a highly ide-
alized limit: donor and acceptor are assumed to be separated
by an infinite distance while at the same time the transfer
is assumed to be completely adiabatic. These two assump-
tions are a contradiction which is impossible to realize in
experiment. Such an approach, however, is meaningful in
Marcus theory which separates the ET rate in an electronic
coupling parameter and a Franck–Condon factor. The behav-
iour of the Franck–Condon factor can thus be studied inde-
pendently of the effect of the electronic coupling (see for
example Refs. [23,25]). It is this Franck–Condon factor which
is described in Marcus theory by intersecting diabatic free
energy surfaces.

The present calculation must be seen in this context. We
use the single ion ab initio approach employed for hetero-
geneous ET to estimate the free energy profiles for homo-
geneous ET between two metal ions infinitely far apart. In
this limit the motion of donor R of the reactant state A =
(R + O) is independent of the acceptor O. The total system
can therefore be divided in two subsystems 1 and 2 consist-
ing of the ions R and O. Similarly the product B = (R+ +
O−) can be resolved in two noninteracting ions R+ = O and
O− = R. The order parameter is then the difference between
the ionization energy �E0(RN

1 ) of subsystem 1 at configu-
ration RN

1 and the electron affinity �E0(RN
2 ) of subsystem

2 at configuration RN
2 , yielding an electronic gap ��E0 for

transfer:

��E0(R2N ) = ��E0(RN
1 , RN

2 )

= �E0(RN
2 ) − �E0(RN

1 ), (29)

where �E0 is given in Eq. (22). Donor and acceptor ions
R and O are uncorrelated at infinite separation, hence the
probability distribution of the reactant pA(��E0) is the

convolution of the distributions pR(�E0(RN
1 )) and

pO(�E0(RN
2 )) obtained from the single ion MD runs of R

and O:

pA(��E0) =
∫ ∞

−∞
d�E0 pR(�E0)

×pO(�E0 − ��E0). (30)

The free energy profile of the reactant AA(��E0) is then,

AA(��E0) = −kBT ln pA(��E0) + AA. (31)

where AA is a constant. For self-exchange reactions such as
Eq. (28) the free energy profile for the product B is given by
inversion symmetry:

AB(��E0) = AA(−��E0). (32)

2.4 Spectral density function of ET energy

For a closer analysis of the dynamics driving the ET we fol-
low Ref. [25] and calculate the TCFs cM (t) of the ET energy
fluctuations:

cM (t) = 〈δ�E0(0)δ�E0(t)〉M (33)

where δ�E0(t) = �E0(t) − 〈�E0〉M , M = R, O. Fourier
transformation of cM (t) gives the spectral density function
JM (ω) defined as

JM (ω)

ω
= β

4

∫ ∞

0
dt cM (t) cos ωt (34)

and the inverse returns cM (t)

cM (t) = 8

βπ

∫ ∞

0
dω

JM (ω)

ω
cos ωt. (35)

Note that the TCF at t = 0 equals the variance of the ET
energy fluctuations:

cM (0) =〈δ�E2
0〉M . (36)

If we assume that linear response applies we obtain

λ′
M = β

2
cM (0) = 4

π

∫ ∞

0
dω

JM (ω)

ω
(37)

by inserting Eq. (36) into Eqs. (18),(19) (�E ≡ �E0) and
using relation Eq. (35). The reorganization free energy can be
interpreted as the sum total of the spectral components of the
TCF of the ET energy. The relaxation free energy can there-
fore be partitioned into contributions from different bands
with weights proportional to the integral of JM (ω)/ω over
the corresponding spectral region.

2.5 Molecular dynamics and electronic structure method

The molecular dynamics and electronic structure method
used are described in detail in Ref. [35]. Aqueous solutions
of Ru3+ and Ru2+ are modelled by a periodically replicated
cubic cell filled with solvent molecules and a single metal ion.
There are no counter ions. The net charge is compensated by
a neutralizing homogeneous background. The length of the
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a

b

Fig. 1 Metal–oxygen (a) and metal–hydrogen (b) radial distribution functions of aqueous Ru2+ (solid lines) and Ru3+ (dashed lines) obtained
from CPMD simulations at 300 K. The solutions are modelled by periodically repeated cubic cells containing one metal ion and 32 water mol-
ecules. The insets show the oxygen and hydrogen coordination numbers obtained from spherical integration of the corresponding distributions.
The data were collected in bins of width 0.01 Å . The distributions were averaged over a trajectory of length 5 ps and smoothed by convolution
with a gaussian of width 0.03 Å. Note that both ions are sixfold coordinated with a Ru–O bond length 0.08 Å shorter in the oxidized state

cell was set equal to 9.86 Å , the size for the MD cell of
the minimal 32 water molecule model system used in the
first simulations of pure liquid water (see e.g. Ref. [49]). The
number of solvent molecules was the same as used for the
Ag+ cation simulations of Ref. [33]. It was determined by
running a classical simulation of the Ag+ cation in a large
solvent system (256 molecules) and counting the number of
water molecules in a cubic box of length 9.86 Å centred on the
classical ion [50]. This number, averaged over time, turned
out to be close to 32, exactly the same as in the pure liquid.
The apparent net zero volume of the solute is a reflection of
the contraction of the liquid around the cation due to electro-
striction effects (for another example of this procedure see
Ref. [36]).

We used the Car–Parrinello method [51] as implemented
in the CPMD package [52]. The simulations were carried
out using a fictitious mass of 500 a.u., a time step of 5 a.u.
(0.1209 fs) and a temperature rescaling to 300 K if the instan-
taneous temperature exceeded a boundary of 300 ± 50 K. The
classical ET energy Eq. (27) was calculated every ten steps
and the quantum ET energy Eq. (21) every 50 MD steps
along an equilibrium trajectory of length 5 ps. The CPMD
simulations of the hexahydrates in vacuum were done sim-
ilarly. Periodic images were removed using the scheme of
Hockney [53]. The pseudo potentials for Ru, O and H were
constructed according to the Troullier-Martins scheme [54].
See Ref. [35] for further details. The orbitals were expanded
in plane waves with a reciprocal space cutoff of 70 Ry. The
exchange-correlation energy was calculated using the gener-
alized gradient approximation (GGA) for exchange accord-
ing to Becke [55] and the GGA for correlation according
to Lee, Yang and Parr [56]. Aqueous solutions and vacuum
hydrates of Ru2+ (d6) and Ru3+ (d5) were simulated for the

low spin configurations 2S + 1=1 and 2S + 1=2 using the
local spin density approximation for Ru3+.

3 Results

3.1 Structural properties

The metal oxygen radial distribution functions of Ru2+ and
Ru3+ are shown in Fig. 1a. Both ions form stable octahedral
complexes with average Ru–O bond distances of 2.18 Å for
Ru2+ and 2.10 Å for Ru3+. The experimental bond length
determined for dilute solutions [45] (and crystals [47]) are
2.11 Å (2.122 Å) for the reduced ion and 2.03 Å (2.029 Å)
for the oxidized ion. Despite overestimation of the absolute
values by about 0.07 Å, the difference of the Ru–O bond
length in the two oxidation states, 0.08 Å, is identical to the
experimental result [45]. The first peak of the Ru–O distri-
bution is symmetric and rather broad displaying fluctuations
in coordination distance of the six ligand water molecules
between 1.98–2.53 Å for Ru2+ and 1.92–2.40 Å for Ru3+.
The radial distribution function vanishes in the range 2.54–
3.40 Å, respectively 2.41–3.39 Å, indicating a clear separa-
tion between first and second solvation shell. As one can see
from Fig. 1a the density increase in the second shell is steeper
for Ru3+ than for Ru2+, indicating that the response to the
increase in charge extends beyond the contraction of the first
solvation shell.

In contrast to reduction of the Ru–O bond length, the Ru–
H distance does not change significantly upon oxidation of
Ru2+ to Ru3+. The first maximum of the Ru–H radial dis-
tribution function shown in Fig. 1b is located at 2.72 and
2.71 Å for reduced and oxidized states, respectively. The
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different response of the metal–oxygen and metal–hydrogen
distances is due to variation of the tilt angle τ defined by the
Ru–O axis and the axis in the water molecule plane intersect-
ing the bending angle. As illustrated in Fig. 2 the centre of the
very broad distribution of τ is shifted from roughly 48◦ for
Ru2+ to about 40◦ for Ru3+ keeping the average Ru-H dis-
tance almost unchanged. Tilt angles in the range 30–70◦ are
not unusual for aqueous cations and have been observed in
experiment [57]. Previous simulation studies generally find
water molecules in the first hydration of trivalent cations, to
be tilted as well but over smaller angles (< 30◦, [37–41]).

Deviation from radial coordination is a consequence of
orbital interactions between metal ion and water ligands as
well as hydrogen bonding to neighbouring molecules [57].
Martinez and coworkers give an interesting purely electro-
static argument for the tilt angles observed in a semi-
continuum study of aqueous Ag+ [58]. This tilt is a direct
consequence of the interaction with the reaction field describ-
ing the polar solvent (see also Ref. [59]). The distortion of
the water ligands leads to an increase of the multipole mo-
ments of the complex which increases the interaction with the
bulk solvent [60,61]. With increasing tilt angle the ion water-
dipole interaction becomes less favorable, however, which is
particularly important for highly charged and small cations.
This argument could also explain the shift of the tilt angle
distribution of Ru3+ to smaller values when compared to
Ru2+.

Size effects of the radial distribution functions are mi-
nor. The position of the peak maxima for the 16, 32 and 50
water molecule systems investigated varies by not more than
0.01 Å which is in the order of the statistical uncertainties.
However, the average Ru-O distance of the 32 water molecule
model solutions of Ru2+ and Ru3+ are shifted by 0.04 and
0.03 Å to larger distances wrt. average bond lengths of hexa-
hydrates in vacuum at T = 300 K. In general bulk solvation
is found to reduce the metal oxygen distance compared to the

Fig. 2 Tilt angle distribution for the six first shell water molecules coor-
dinated to Ru2+ and Ru3+ as obtained from CPMD runs at 300 K
(system as in Fig. 1). The tilt angle is defined by the plane of the
water molecule and the Ru–O axis. At τ =0◦ the water molecule plane
contains the Ru–O axis as required for Th symmetry. The data were
collected in bins of width 0.01. The distributions were averaged over
5 ps and smoothed with a gaussian window of width 0.01

zero temperature vacuum clusters [37,39–41]. Our results for
Ru seem to be somewhat of an exception in this respect which
requires an explanation. Unfortunately the trends predicted
by continuum models are not entirely conclusive. Depending
on whether a spherical or a molecular shape cavity is used,
the metal oxygen bond length either expands or shrinks with
respect to the isolated hexahydrate value [62]. In Ref. [58] it
was argued, on the basis of an electrostatic picture, that sec-
ond shell ligands and bulk molecules have opposite effects
on metal–oxygen bonding distances. Our results suggest that
Ru2+ and Ru3+ could be an example of an ion where the
balance is the other way around leading to an expansion of
the metal–oxygen distances in the first shell.

A comparison to the results of zero temperature ab ini-
tio calculations in the gas phase may be of interest as well.
The average bond lengths we obtain for the solvated ions of
Ru2+ and Ru3+ are similar to the values for the hexahydrates
in vacuum (0 K), 2.197 and 2.090 Å, computed from symme-
try restricted optimizations at the CASSCF level [63]. In this
study, too, the Ru–O bond lengths of both oxidation states are
overestimated by about 0.06–0.08 Å wrt. experiment (solu-
tion and crystal) resulting in a reasonably good estimate for
the relative difference. A somewhat better agreement with the
experimental absolute bonding distance has been obtained
in the DFT study of Ref. [64] for Ru(H2O)3+

6 , 2.044 Å. At
300 K the average MD bond length of Ru(H2O)3+

6 , 2.07 Å,
is mid way between the values obtained in Refs. [63], [64].
The interpretation of geometry optimization in vacuum is
however not without ambiguity. The reason is that, simi-
lar to the solvated complex, also the Ru2+ vacuum cluster
shows distinct anomalous behaviour according to our calcula-
tions. Unlike most hexahydrates of ions with spherical closed
shell electronic configurations (so excluding Jahn Teller com-
plexes) the equilibrium geometry of Ru2+, as obtained in our
plane wave pseudo potential code, deviates from the familiar
Th structure. The coordinated water molecules already show
an appreciable tilt (τ = 46◦ for Ru2+ and τ = 38◦ for Ru3+)
even without the presence of a second solvation shell. This
result was verified by repeating the calculation using the ADF
code [65] yielding similarly large tilt angles (τ = 41◦, 28◦
for Ru2+ respectively Ru3+). As also suggested in Ref. [59]
tilting of the molecular plane and stretching of the metal–
oxygen bond are most likely coupled, which could provide
another mechanism for the observed dilation of the metal to
oxygen distance in solution.

3.2 Free energy profiles for heterogeneous ET

The probability distributions Eq. (4) of quantum and classical
ET energy, �Eµ [Eq. (21)] and �Uµ [Eq. (27)] are shown
in Figs. 3a and 4a, respectively. Both distributions were cal-
culated from 5 ps of equilibrium CPMD runs for oxidized
(O) and reduced (R) state at 300 K for the model system
consisting of 32 solvent molecules. The electronic chemical
potential µ = 0.58 eV was chosen to equal −�A obtained
from Eq. (24). For this particular value of µ the minima of the
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a

b

Fig. 3 Equilibrium distributions of the quantum ET energy [vertical
energy gap, Eq. (21)] �Eµ (a) and the corresponding diabatic free
energy profiles (b) for the redox couple Ru2+/Ru3+. The probability
distributions Eq. (4) (ξ = �Eµ) obtained from equilibrium CPMD
simulations of Ru2+ and Ru3+ are shown in dotted lines. Gaussian fits
are indicated in solid lines. Data points within 1.5 standard deviations
from the centre of the distributions were used to obtain the two lower
branches of the free energy profiles (thick lines). The upper branches
(thick lines) were obtained from the lower branches using the linear
free energy relation Eq. (12). For each state lower and upper branch are
fitted to a parabola (thin lines) giving the full diabatic free energy curve
for Ru2+ and Ru3+, respectively. The electronic chemical potential was
chosen so that the minima of the diabatic curves are aligned

two free energy curves are aligned, �Aµ = 0. The fluctua-
tions of the two coordinates �Eµ and �Uµ are well approx-
imated by gaussian distributions for both oxidation states
with correlation coefficients of about 0.98. The correspond-
ing diabatic free energy curves using �Eµ as order param-
eter (Fig. 3b) are constructed by combining the data points
obtained from equilibrium simulation of R and O. The lower
right branch of the curve for R is obtained from the equilib-
rium distribution of R. The upper left branch of the curve for R
is obtained from the equilibrium distribution of O and shifted
according to Eq. (12) by −�Eµ. Both upper and lower curves
are fitted to one parabola giving the diabatic free energy pro-
file for state R. The profile for state O is constructed similarly.
This procedure of combining data points has not been applied
to the curves along �Uµ because the linear free energy rela-
tion Eq. 12 is not valid for �Uµ. However, the curves shown
in Fig. 4b have been confirmed in Ref. [35] using constrained
MD.

As one can see in Fig. 3b the quadratic fit functions
in �Eµ approximate the data points very well (correlation
coefficient of 0.9998). The curvature is equal for both states

a

b

Fig. 4 Equilibrium distributions of the classical ET energy [solvent
electrostatic potential, Eq. (27)]�Uµ (a) and diabatic free energy curves
(b) for the redox couple Ru2+/Ru3+. The probability distribution Eq. 4
(ξ = �Uµ, dotted lines) are obtained from equilibrium CPMD simu-
lations of Ru2+ and Ru3+ and taken from Ref. [35]. Gaussian fits are
indicated in solid lines. The corresponding free energy curves (thick
lines in b) are fitted to parabolae (thin lines). The electronic chemi-
cal potential was chosen so that the minima of the diabatic curves are
aligned. The scale of the axes was chosen equal to the one in Fig. 3
to emphasize the difference in fluctuation of quantum and classical ET
energy

and the position of the minimum coincides with the reor-
ganization free energy as predicted by Eqs. (15) and (16)
(�A ≡ �Aµ = 0, see Table 1). The Ru2+/Ru3+ redox cou-
ple is therefore very well described by the linear response
approximation. A striking observation is that the distributions
of the classical ET energy �Uµ are also gaussian but signifi-
cantly broader compared to �Eµ and distinctly asymmetric.
Contrary to �Eµ the linear free energy relation Eq. (12)
does not apply for �Uµ, therefore imposing no constraints
on the relative values of the widths of gaussian distributions
for �Uµ. In fact, the reorganization free energy in the oxi-
dized state is almost twice as large as for the reduced state.
Our results suggest therefore that electronic ionization and
relaxation effects that are missing in the classical potential but
fully represented in the electronic energy gap lead to smaller
and symmetric fluctuations of the corresponding ET energy.

A further test for ‘Marcus’ type free energy curves is pro-
vided by Eqs. (18), (19) and (20) which relate the reorgani-
zation free energy to the variance of order parameter fluctua-
tions. Equation (20) is exact for two parabolae with equal cur-
vature that obey the linear free energy relation Eq. (12). For
�Eµ the agreement between λ′

M and λM is reasonably good,
λ′

M = 1.0 eV, λM = 0.8 eV, M=R,O. The small discrepancy
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Table 1 Equilibrium distribution and free energy profile for quantum
[ξ = �Eµ, Eq. (21)] and classical [ξ = �Uµ, Eq. (27)] electron trans-
fer (ET) energy of the single ions Ru2+ (R) and Ru3+ (O) in solution
and vacuum

Solution Vacuum

Quantum Classical Quantum Classical

〈ξ〉R (eV) 0.81 1.02 0.66 0.37
〈ξ〉O (eV) −0.70 −0.78 −1.01 −0.46
〈δξ2〉1/2

R (eV) 0.225 0.386 0.277 0.352
〈δξ2〉1/2

O (eV) 0.227 0.326 0.219 0.316

λR (eV) 0.78 0.24 0.82 0.08
λO (eV) 0.78 0.42 0.83 0.09
ξR (eV) 0.78 1.00 0.84 0.35
ξO (eV) −0.78 −0.82 −0.82 −0.47
λ′

R (eV) 0.98 2.88 1.48 2.40
λ′

O (eV) 1.00 2.06 0.93 1.93
�A (eV) −0.58 10.34 11.37 21.27
�Aµ (eV) 0 0 0 0
�A‡

µ (eV) 0.20 0.08 0.21 0.02

The solutions are modelled by a periodically repeated unit cell contain-
ing one ion and 32 water molecules. The ion in vacuum is coordinated by
six water molecules and treated as isolated system. 〈ξ〉M and 〈δξ2〉1/2

M
denote average and width of the distributions Eq. (4) obtained from
CPMD runs in state M , M = R,O, at 300 K. For evaluation of �Uµ we
have used the SPC charges for O and H atoms, qO =−2qH =−0.8476e,
�Ev

0 =28.7 eV [36] and qO =3, qR =2. The finite size correction (sec-
ond term on the RHS of Eq. 26) was omitted for calculations in vacuum.
λM is the relaxation free energy of Eqs. (7) and (8) obtained from the
parabolic fit of the free energy curves shown in Figs. 3b and 4b. The
position of the minimum of the parabolic fits is denoted ξM . λ′

M is

obtained from 〈δξ2〉M according to Eqs. (18) and (19). �A‡
µ denotes

the solvation free energy barrier obtained from the crossing point of the
parabolic fits

is due to the fact that λM is obtained from a fit combining the
data points of states R and O while λ′

M is obtained separately
for each state. Therefore λM has smaller statistical uncer-
tainty than λ′

M and is the preferred value. These relations are
unique to the true energy gap and, for a quantum system,
no longer hold for the classical solvent electrostatic energy
�Uµ. This is illustrated by the large deviation between the
classical reorganization free energies λ′

M and λM where λ′
M

was obtained by replacing δ�E with δ�U in Eqs. (18) and
(19) (see Table 1).

The reorganization free energy is usually partitioned in
contributions from the inner sphere consisting of the ion
+ first shell ligands and the outer sphere consisting of solvent
molecules. These energy components can be easily deter-
mined in classical MD simulations because the contribution
of single water molecules to the classical ET energy is explic-
itly known. Such an energy decomposition is more difficult
for the quantum ET energy requiring special localization
methods which have not been implemented in our code. A
first estimate of the outer sphere contribution can however be
obtained by comparing the relaxation free energies in solu-
tion with those computed from a simulation of the first shell
coordination complex in vacuum.

The ET energy distributions obtained for the ruthenium
hexahydrates in vacuum are again close to gaussian with cor-

relation coefficients similar to the values in solution. Upon
solvation the magnitude of the classical ET energy averages
is increased (from 0.37 to 1.02 eV for R and from −0.46 to
−0.78 eV for O) and also the widths (from 0.352 to 0.386 eV
for R and from 0.316 to 0.326 eV for O). This leads to an
outer sphere contribution of 66.7 and 78.6% for the reorga-
nization free energies of R and O, respectively (see Table 2).
For the quantum ET energy the situation is, however, some-
what confusing. The vacuum free energy curves obtained
from combining the data of state O and R fit very well to
parabolae. However, the corresponding reorganization free
energy in vacuum is not smaller but even larger (0.82 eV)
than in solution (0.78 eV) which would imply that the outer
sphere contribution is slightly negative. Underestimation of
outer sphere contributions can easily be blamed on the small
rigid MD cell used in our simulation, frustrating relaxation
of long range electrostriction forces (for further discussion of
size effects see Sect. 4). However, a negative value of a quan-
tity that is inherently positive, is more difficult to understand.
A further consideration in an attempt to rationalize this coun-
terintuitive result could be the observation that in vacuum the
metal–oxygen bond lengths of R and O are shorter than in
solution (see Sect. 3.1) suggesting that the decrease in free
energy as a result of reorganization of the inner sphere com-
plex (hexahydrate) is less severe in solution than in vacuum.
If this difference is comparable to the reorganization free
energy of the outer sphere water molecules the total reorga-
nization free energy in solution can be equal or even smaller
than the value in vacuum. In other words, the vacuum reor-
ganization free energy is a poor approximation to the ‘true’
inner sphere contribution in solution and our simple-minded
partitioning scheme fails for the quantum case.

3.3 Free energy profile for homogeneous ET

As explained in Sect. 2.3 the ET energy distribution for
half reactions can be converted to a hypothetical distribution
for homogeneous ET in the limit of infinite ion separation
[Eq. (30)]. The convolution of quantum and classical ET
energy distributions of donor (R) and acceptor (O) yields
almost exact gaussian distributions for the energy gap coordi-
nate ��E0 and ��U0, respectively, with correlation coeffi-
cients of 0.998 and 0.9999 (see Figs. 5a and 6a and Table
3). As illustrated in Figs. 5b and 6b the free energy curves
for the quantum and classical gap are almost perfectly har-
monic. The free energy profiles of reactant (Ru∗2+–Ru3+,
State A, see Section 2) and product (Ru∗3+–Ru2+, State B)
automatically satisfy Eq. (13) due to symmetry of inver-
sion of the gap [Eq. (32)]. The position of the minimum
of the curve for homogeneous ET along the quantum gap
is shifted to approximately twice the value for heteroge-
neous ET, ξA = −ξB ≈ 2ξR ≈ −2ξO, and the variance of
the fluctuations (second moment) is almost doubled as well
σ 2

A =σ 2
B ≈2σ 2

R ≈ 2σ 2
O. These relations are exact if donor and

acceptor distributions are gaussians of equal width (property
of the convolution). As a result, also the reorganization free
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Table 2 Partition of the single ion reorganization free energy λM in inner and outer sphere contributions, fi and fo, respectively, and of λ′
M in

spectral components, M = R,O

λR λO λ

Quantum Classical Quantum Classical Quantum Classical

fi 105.1 33.3 106.4 21.4 109.9 24.6
fo −5.1 66.7 −6.4 78.6 −9.9 75.4

λ′
R λ′

O

0–1,300 cm−1 90.8 95.1 89.9 86.6
1,300–2,800 cm−1 9.2 4.0 10.1 12.0
2,800–4,000 cm−1 – 0.9 – 1.4

λ is the reorganization free energy for homogeneous ET between two infinitely separated ions given in Table 3. The inner sphere contribution is
defined as fi =λM (vacuum)/λM (solution) ∗ 100 where λM was taken from Table 1, fo =100 − fi. The partitioning of λ was done similarly. The
relative spectral contributions for λ′

M were obtained by integrating the weighted spectral density function J (ω)/ω according to Eq. (37) over the
corresponding bands and dividing by λ′

M (see insets of Fig. 8)

a

b

Fig. 5 Equilibrium distributions of the quantum gap energy ��E0
(a) and corresponding diabatic free energy profiles (b) for the ion pair
Ru2+–Ru3+ at infinite ion separation. The probability distributions (dot-
ted lines) were obtained by convolution of the single ion distributions
pR and pO [Eq. (30)] shown in Fig. 3a. Gaussian fits of the distributions
are displayed in solid lines. The distributions and free energy curves are
symmetric due to Eq. (32). Data points within 2.5 standard deviations
from the centre of the distribution were taken to construct the lower
branch of the free energy curve. The upper branch was obtained using
the linear free energy relation Eq. (12). Upper and lower branches (thick
lines) are fitted to parabolae (thin lines)

energy λ increases by a factor 2 (Eqs. 18, 19, 20) and hence
also the activation, since �A‡ =λ/4 is predicted to be twice
as large as for heterogeneous ET. This result is intuitive since
for homogeneous ET both metal ions (and not only one as
in heterogeneous ET) have to be thermally excited to form
the transition state. From the parabolic fits of our simulation

a

b

Fig. 6 Equilibrium distributions of the classical gap energy ��U0 (a)
and the corresponding free energy curves (b) for the ion pair Ru2+–
Ru3+ at infinite ion separation. The probability distributions (dotted
lines) were obtained by convolution of the single ion distributions pR
and pO [Eq. (30)] shown in Fig. 4a. Gaussian fits are displayed in solid
lines. The distributions and free energy curves are symmetric due to
Eq. (32). The free energy profiles obtained from the equilibrium distri-
butions (thick lines) are fitted to parabolae (thin lines)

results in solution (Tables 1 and 3) we obtain λ = 1.94λM ,
M = R,O, and �A‡ = 1.90�A‡

µ (µ= 0.58 eV) for the quan-
tum gap as order parameter. The deviations from the expected
factor 2 must be attributed to small non-gaussian contribu-
tions to the equilibrium fluctuations. Solvation effects on the
homogeneous ET curves are similar to the ones discussed
for heterogeneous ET. While negative for the quantum reor-
ganization free energy, the outer sphere contribution for the
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Table 3 Equilibrium distribution and free energy profile for quantum
(ξ = ��E0) and classical (ξ = ��U0) gap energy Eq. (29) computed
for the infinitely separated ion pair Ru2+-Ru3+ in solution and vacuum

Solution Vacuum

Quantum Classical Quantum Classical

〈ξ〉 (eV) 1.54 1.80 1.67 0.82

〈δξ2〉1/2 (eV) 0.303 0.511 0.347 0.466
λ (eV) 1.51 0.65 1.66 0.16
ξA (eV) 1.52 1.79 1.67 0.83
λ′ (eV) 1.78 5.05 2.33 4.20
�A (eV) 0 0 0 0
�A‡ (eV) 0.38 0.16 0.41 0.04

〈ξ〉 and 〈δξ2〉1/2
M denote average and width of the distribution pA ob-

tained from convolution of the single ion distributions according to
Eq. (30). λ is the relaxation free energy and ξA the position of the mini-
mum of the parabolic fit of the free energy curve AA shown in Figs. 5b
and 6b. λ′ = β〈δξ2〉/2. �A‡ denotes the activation free energy for
homogeneous ET obtained from the crossing point of the parabolic fits.
Note that free energy profiles for reactant A and product B are symmet-
ric [Eq. (32)]

classical reorganization free energy amounts to 75.4% which
is close to the estimate obtained in Ref. [25] for the Fe2+–
Fe3+ system (72% at an ion–ion separation distance d =9 Å).

How well does the estimate for the solvation free en-
ergy barrier �A‡ = 0.38 eV compare to experimental re-
sults? According to the measurements of Ref. [46] the rate
constant for ET between Ru2+ and Ru3+ is kobs = 60 ±
40 M−1s−1. Taking a value of K0 = 0.033 M−1 [45] for the
pre-equilibrium constant and assuming unity for the elec-
tronic factor, κ = 1, the transition state formula kobs = K0κ
(kT/h) exp(−�G‡/RT ) gives an experimental estimate
�G‡ = 0.55 eV. Our result underestimates the experimental
barrier by 0.17 eV and probably by more if calculated for the
optimum ion–ion distance and not for the limit of infinite sep-
aration. The underestimation is most likely due to the small
system size used (see further Sect. 4).

3.4 Spectral analysis of ET energy fluctuations

The normalized TCF cM (t)/cM (0) [Eq. 33)] of �E0 and
�U0 are shown in Fig. 7 for reduced and oxidized state. The
TCFs decay rapidly and cross the zero point after about 50 fs
(except for �E0 of O). The oscillations of the TCF of �E0
and �U0 are in phase but the magnitude for �U0 is signifi-
cantly larger. High frequency components are not resolved in
the TCF of �E0 because the quantum ET energy was sam-
pled every 50 MD steps (= 6 fs), only, limiting the maximum
frequency to 2,757 cm−1. Contributions from intramolecu-
lar motions of water molecules are resolved in the TCF of
the classical ET energy which was sampled every 10 MD
steps on the same trajectory. After 1 ps the integral of the
TCF (correlation time) reaches a plateau value of about 110 fs
which is close to its oscillation period. The TCF of �U0 of O
decays exceptionally fast leading to a lower correlation time
of about 55 fs. Integration of the TCF beyond 1.5 ps gives a

a

b

Fig. 7 Normalized time correlation function (TCF) cM (t)/cM (0) of
quantum and classical ET energy, �E0 (solid lines) and �U0 (dashed
lines), respectively. The TCF is computed from 5 ps equilibrium tra-
jectories of aqueous Ru2+ (a, M = R) and Ru3+ (b, M = O) at 300 K.
�E0 was sampled every 6 fs and �U0 every 1.2 fs. The insets show the
integral of the TCF (correlation time) as a function of the integration
time

sharp decrease of the correlation time due to the finite length
of the trajectories (5 ps). We have taken the first 1.5 ps of
the TCF for the computation of the spectral density function
J (ω) defined in Eq. (34).

The frequency spectrum of the TCF is shown in Fig. 8 for
reduced and oxidized state. Quantum and classical ET energy
fluctuations of Ru2+ are dominated by the Ru–O deforma-
tion modes between 0–500 cm−1. Somewhat surprisingly,
the quantum ET energy fluctuations do not exhibit signifi-
cant intensity at higher frequencies. This is in contrast to
the classical fluctuations which show a broad band between
500–1,100 cm−1 (Ru–O stretch, H2O rocking, twisting,...)
and two sharp peaks at around 1,580 cm−1 (H2O bending).
Contributions from intramolecular OH bond stretching are
minor. The spectrum for Ru3+ is blue shifted in the region
0–500 cm−1 wrt. the spectrum of Ru2+. This is in agreement
with our expectation as ion–ligand vibrational frequencies
usually increase with increasing ion charge. The difference
between spectra of quantum and classical ET energy fluc-
tuations is again striking for frequencies higher than 500
cm−1. While for the quantum fluctuations virtually no inten-
sity is observed, the classical fluctuations show sharp peaks
of high intensity at around 910 and 1,560 cm−1. Thus, elec-
tronic relaxation seems to compensate the ET energy fluc-
tuations arising from high frequency motions of ligand and
solvent molecules. The pronounced difference of spectra in
the bending region is not reflected in the spectral decompo-
sition of the reorganization free energy λ′

M (Table 2). The



Quantum versus classical electron transfer energy as reaction coordinate for the aqueous Ru2+/Ru3+ redox reaction 125

a

b

Fig. 8 Spectral density function JM of quantum and classical ET energy,
�E0 (solid lines) and �U0 (dashed lines), respectively, obtained for
aqueous Ru2+ (a, M=R) and Ru3+ (b, M=O). JM (ω) was evaluated
by Fourier transformation of the corresponding TCFs shown in Fig. 7
according to Eq. (34). The insets display the integral λ′

M (ω)/λ′
M =

4/π
∫ ω

0 dω′ JM (ω′)/(λ′
Mω′) where λ′

M is defined in Eq. (37). The max-
imum frequency resolved for �E0 is 2,757 cm−1 corresponding to a
sampling interval of 6 ps (shown for the range 0–2,000 cm−1). The res-
olution of the spectra is 11.1 cm−1 for �E0 and �U0. The spectra were
convoluted with a gaussian window of width 30 cm−1

contributions are similar for quantum and classical ET en-
ergy because the weight factor 1/ω in Eq. (37) smears out
the difference of intensities for higher frequencies. About
90% of the fluctuations are due to the slow metal–oxygen
vibrations and only 10% due to bending motion while con-
tributions from intramolecular stretching modes are minor.

4 Discussion and conclusion

In this work we have compared the free energy profiles for
the redox reaction between Ru2+ and Ru3+ using two differ-
ent order parameters: the quantum and classical energies,
respectively required to transfer an electron from Ru2+ to
an idealized noninteracting electrode. We found that the di-
abatic curves for both coordinates are well approximated by
quadratic functions. The horizontal position of the free en-
ergy minima are similar for both coordinates but the cur-
vature along the classical coordinate is significantly smaller
and asymmetric. As electronic polarization is missing in the
classical ET energy, this difference must be a consequence of
the delocalization of the HOMO over first shell ligands and
electronic relaxation after ET. The net effect is a decrease
of fluctuations of the energy gap between the two diabatic
states and therefore an increased curvature of the free energy
profile. The reorganization free energies of Ru3+ and Ru2+

that differ by a factor of almost 2 for the classical coordi-
nate become equal if the electronic relaxation is explicitly
considered.

This, at first, somewhat surprising result seems to sug-
gest that the effect of an oxidation state dependence of sol-
ute polarizability is opposite to what was intended by the
Matyushov–Voth model [31,21]. Rather than enhancing the
difference between oxidation states, the electronic polariz-
ability of solute (and solvent) apparently smoothes out these
differences, bringing the ions back to the linear regime. For
a proper interpretation of this statement we should make two
qualifications. First we recall the results of Ref. [12] show-
ing that a fully classical model of the solution, in which the
solvent electrostatic potential (which we indicated by �Uµ)
is identical to the energy gap, indeed produces free energy
curves for the two oxidation states with almost equal curva-
ture, similar to the electronic structure calculations reported
here. This suggests that the asymmetry that we found when
the same classical order parameter is applied in a DFT sim-
ulation, is probably due to the inconsistency in the treatment
of electronic polarization, which is included in the molecular
dynamics but not in the classical gap energy.

Secondly there remains, of course, the crucial question to
what extent these observations are caused by the very limited
system size dimension of our models. Indeed the size depen-
dence of the reorganization free energy (λ) is large. It can be
shown that the error in λ as computed using a classical model
of the Fe2+ and Fe3+ aqua ions is inversely proportional to the
box length (L), adding easily an eV or more to the estimate
obtained from a model as small as used here (32–50 solvent
molecules). As almost all of the increase with system size
will come from the expansion of the outer shell the problem
of the negative contribution of this region to the reorgani-
zation in a small system (Table 2) will disappear. Since the
system can however be assumed to stay in the linear regime
when scaled up, our main result can be safely generalized to
all system sizes. We conclude therefore that the predictions
of Marcus theory apply very well to the Ru2+/Ru3+ redox
couple provided that the ‘correct’ Marcus order parameter is
taken as reaction coordinate. For ab initio MD simulations
this is the quantum ET energy.
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